MATH 20D Spring 2023 Lecture 2.

Vocabularly, Initial Value Problems, and Implicit Solutions

Announcements

- Homework 1 is posted, due 10pm next Tuesday via Gradescope.

Announcements

- Homework 1 is posted, due 10pm next Tuesday via Gradescope.
- Join the class Zulip (see Canvas announcement for link)

Announcements

- Homework 1 is posted, due 10pm next Tuesday via Gradescope.
- Join the class Zulip (see Canvas announcement for link)
- MATLAB Gradescope has been created. Contact the head MATLAB TA Itai Maimon (imaimon@ucsd. edu) is you require access.

Last Time

- We studied an (undriven) Harmonic Oscillator with spring coefficient $k>0$ and friction coefficient $b \geqslant 0$.

Last Time

- We studied an (undriven) Harmonic Oscillator with spring coefficient $k>0$ and friction coefficient $b \geqslant 0$.
- We derived a differential equation

$$
\begin{equation*}
M y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0 \tag{1}
\end{equation*}
$$

satisfied by the displacement $y(t)$ of the mass M at time t.

Last Time

- We studied an (undriven) Harmonic Oscillator with spring coefficient $k>0$ and friction coefficient $b \geqslant 0$.
- We derived a differential equation

$$
\begin{equation*}
M y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0 \tag{1}
\end{equation*}
$$

satisfied by the displacement $y(t)$ of the mass M at time t.

- The equation (1) is an example of a homogeneous second order linear ordinary differential equation (ODE)

Last Time

- We studied an (undriven) Harmonic Oscillator with spring coefficient $k>0$ and friction coefficient $b \geqslant 0$.
- We derived a differential equation

$$
\begin{equation*}
M y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0 \tag{1}
\end{equation*}
$$

satisfied by the displacement $y(t)$ of the mass M at time t.

- The equation (1) is an example of a homogeneous second order linear ordinary differential equation (ODE)
- Our first task is to build some vocabularly surrounding differential equations so that

Last Time

- We studied an (undriven) Harmonic Oscillator with spring coefficient $k>0$ and friction coefficient $b \geqslant 0$.
- We derived a differential equation

$$
\begin{equation*}
M y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0 \tag{1}
\end{equation*}
$$

satisfied by the displacement $y(t)$ of the mass M at time t.

- The equation (1) is an example of a homogeneous second order linear ordinary differential equation (ODE)
- Our first task is to build some vocabularly surrounding differential equations so that
(a) You can impress your friends with cool math words.

Last Time

- We studied an (undriven) Harmonic Oscillator with spring coefficient $k>0$ and friction coefficient $b \geqslant 0$.
- We derived a differential equation

$$
\begin{equation*}
M y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0 \tag{1}
\end{equation*}
$$

satisfied by the displacement $y(t)$ of the mass M at time t.

- The equation (1) is an example of a homogeneous second order linear ordinary differential equation (ODE)
- Our first task is to build some vocabularly surrounding differential equations so that
(a) You can impress your friends with cool math words.
(b) We have the linguistic tools neccessary to isolate some nice classes of differential equations e.g. homogeous linear ODE's.

ODE's and PDE's

Differential equations fall into two broad two categories:

ODE's and PDE's

Differential equations fall into two broad two categories:

- Ordinary Differential Equations An equation in the symbols

$$
y(t), y^{\prime}(t), \ldots, y^{(n)}(t), \quad \text { and } \quad t
$$

where
n is a positive integer
$y(t)$ is a function of t and $y^{(k)}(t)=\frac{d y^{k}}{d t^{k}}$

ODE's and PDE's

Differential equations fall into two broad two categories:

- Ordinary Differential Equations An equation in the symbols

$$
y(t), y^{\prime}(t), \ldots, y^{(n)}(t), \quad \text { and } \quad t
$$

where
n is a positive integer
$y(t)$ is a function of t and $y^{(k)}(t)=\frac{d y^{k}}{d t^{k}}$

- Partial Differential Equations An equation involving derivatives with respect to two or more independent variables.

ODE's and PDE's

Differential equations fall into two broad two categories:

- Ordinary Differential Equations An equation in the symbols

$$
y(t), y^{\prime}(t), \ldots, y^{(n)}(t), \quad \text { and } \quad t
$$

where
n is a positive integer
$y(t)$ is a function of t and $y^{(k)}(t)=\frac{d y^{k}}{d t^{k}}$

- Partial Differential Equations An equation involving derivatives with respect to two or more independent variables.

ODE's only involve ordinary derivatives such as $\frac{d y}{d t}, \frac{d^{2} y}{d t^{2}}, \ldots$ whereas PDE's must include partial derivatives such as $\frac{\partial y}{\partial t}$.

ODE's and PDE's

Differential equations fall into two broad two categories:

- Ordinary Differential Equations An equation in the symbols

$$
y(t), y^{\prime}(t), \ldots, y^{(n)}(t), \quad \text { and } \quad t
$$

where
n is a positive integer
$y(t)$ is a function of t and $y^{(k)}(t)=\frac{d y^{k}}{d t^{k}}$

- Partial Differential Equations An equation involving derivatives with respect to two or more independent variables.

ODE's only involve ordinary derivatives such as $\frac{d y}{d t}, \frac{d^{2} y}{d t^{2}}, \ldots$ whereas PDE's must include partial derivatives such as $\frac{\partial y}{\partial t}$.

The degree or order of an ODE is the largest value of k such that $\frac{d^{k} y}{d t^{k}}$ appears in the equation.

Example: PDE's vs ODE's

Determine which equations are PDE's and which are ODE's

- (Hermite's Equation for a quantum harmonic osciallator)

$$
\frac{d^{2} y}{d t^{2}}-2 x \frac{d y}{d t}-\lambda y=0
$$

where λ is a constant.

Example: PDE's vs ODE's

Determine which equations are PDE's and which are ODE's

- (Hermite's Equation for a quantum harmonic osciallator)

$$
\frac{d^{2} y}{d t^{2}}-2 x \frac{d y}{d t}-\lambda y=0
$$

where λ is a constant. 2nd order ODE .

Example: PDE's vs ODE's

Determine which equations are PDE's and which are ODE's

- (Hermite's Equation for a quantum harmonic osciallator)

$$
\frac{d^{2} y}{d t^{2}}-2 x \frac{d y}{d t}-\lambda y=0
$$

where λ is a constant. 2nd order ODE .

- (The wave equation)

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 .
$$

where c is contant and u is a function of t and x

Example: PDE's vs ODE's

Determine which equations are PDE's and which are ODE's

- (Hermite's Equation for a quantum harmonic osciallator)

$$
\frac{d^{2} y}{d t^{2}}-2 x \frac{d y}{d t}-\lambda y=0
$$

where λ is a constant. 2nd order ODE .

- (The wave equation)

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 .
$$

where c is contant and u is a function of t and x PDE.

Example: PDE's vs ODE's

Determine which equations are PDE's and which are ODE's

- (Hermite's Equation for a quantum harmonic osciallator)

$$
\frac{d^{2} y}{d t^{2}}-2 x \frac{d y}{d t}-\lambda y=0
$$

where λ is a constant. 2nd order ODE .

- (The wave equation)

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0 .
$$

where c is contant and u is a function of t and x PDE.

- (Kidder's Equation)

$$
\sqrt{1-w} \frac{d^{2} w}{d x^{2}}+2 x \frac{d w}{d x}=0
$$

where w is a function of x.

Example: PDE's vs ODE's

Determine which equations are PDE's and which are ODE's

- (Hermite's Equation for a quantum harmonic osciallator)

$$
\frac{d^{2} y}{d t^{2}}-2 x \frac{d y}{d t}-\lambda y=0
$$

where λ is a constant. 2nd order ODE .

- (The wave equation)

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

where c is contant and u is a function of t and x PDE.

- (Kidder's Equation)

$$
\sqrt{1-w} \frac{d^{2} w}{d x^{2}}+2 x \frac{d w}{d x}=0
$$

where w is a function of x. 2nd order ODE

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

- An n-th order ODE is non-linear if it is not linear.

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

- An n-th order ODE is non-linear if it is not linear.

Example

- The ODE $y^{\prime}(x)+y(x)^{2}=0$ is

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

- An n-th order ODE is non-linear if it is not linear.

Example

- The ODE $y^{\prime}(x)+y(x)^{2}=0$ is non-linear.

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

- An n-th order ODE is non-linear if it is not linear.

Example

- The ODE $y^{\prime}(x)+y(x)^{2}=0$ is non-linear.
- The ODE $y^{\prime}(t)+t^{2}=0$ is

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

- An n-th order ODE is non-linear if it is not linear.

Example

- The ODE $y^{\prime}(x)+y(x)^{2}=0$ is non-linear.
- The ODE $y^{\prime}(t)+t^{2}=0$ is linear.

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

- An n-th order ODE is non-linear if it is not linear.

Example

- The ODE $y^{\prime}(x)+y(x)^{2}=0$ is non-linear.
- The ODE $y^{\prime}(t)+t^{2}=0$ is linear.
- The ODE $t^{2} y^{\prime}(t)+\sec (t) y(t)=\tan (\log (t))$ is

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

- An n-th order ODE is non-linear if it is not linear.

Example

- The ODE $y^{\prime}(x)+y(x)^{2}=0$ is non-linear.
- The ODE $y^{\prime}(t)+t^{2}=0$ is linear.
- The ODE $t^{2} y^{\prime}(t)+\sec (t) y(t)=\tan (\log (t))$ is linear.

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

- An n-th order ODE is non-linear if it is not linear.

Example

- The ODE $y^{\prime}(x)+y(x)^{2}=0$ is non-linear.
- The ODE $y^{\prime}(t)+t^{2}=0$ is linear.
- The ODE $t^{2} y^{\prime}(t)+\sec (t) y(t)=\tan (\log (t))$ is linear.
- The ODE $y(t)^{2} y^{\prime}(t)+\sec (t) y(t)=\tan (\log (t))$ is

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

- An n-th order ODE is non-linear if it is not linear.

Example

- The ODE $y^{\prime}(x)+y(x)^{2}=0$ is non-linear.
- The ODE $y^{\prime}(t)+t^{2}=0$ is linear.
- The ODE $t^{2} y^{\prime}(t)+\sec (t) y(t)=\tan (\log (t))$ is linear.
- The ODE $y(t)^{2} y^{\prime}(t)+\sec (t) y(t)=\tan (\log (t))$ is non-linear.

Linear and Nonlinear ODE's

- An n-th order ODE is linear if it takes the form

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

where $g(t), a_{1}(t), \ldots, a_{n}(t)$ are continuous functions of t defined on a subset of the real line.

- An n-th order ODE is non-linear if it is not linear.

Example

- The ODE $y^{\prime}(x)+y(x)^{2}=0$ is non-linear.
- The ODE $y^{\prime}(t)+t^{2}=0$ is linear.
- The ODE $t^{2} y^{\prime}(t)+\sec (t) y(t)=\tan (\log (t))$ is linear.
- The ODE $y(t)^{2} y^{\prime}(t)+\sec (t) y(t)=\tan (\log (t))$ is non-linear.

The true star of this class with be the the linear ODE of order $\leqslant 2$.

Verifying Differential Equations I

- There no known method for solving a general linear ODE

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

Verifying Differential Equations I

- There no known method for solving a general linear ODE

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

- Solving a general non-linear is even more hopeless. However, one can always hope to check that a given function defines a solution to an ODE via the method of "plug et chug".

Verifying Differential Equations I

- There no known method for solving a general linear ODE

$$
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

- Solving a general non-linear is even more hopeless. However, one can always hope to check that a given function defines a solution to an ODE via the method of "plug et chug".

Example

Verify that

$$
\phi: \mathbb{R}-\{0\} \rightarrow \mathbb{R}, \quad \phi(x)=x^{2}-x^{-1}
$$

is a solution to the initial value problem

$$
\frac{d^{2} \phi}{d x^{2}}-\frac{2}{x^{2}} \phi=0, \quad \phi(1)=0, \quad \phi^{\prime}(1)=3 .
$$

Initial Value Problems

Definition

An n-th order linear initial value problem (IVP) is an n-th order linear ODE

$$
y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

together with a family of initial conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

such that $x_{0}, y_{0}, y_{1}, \ldots, y_{n-1}$ are fixed constants and the functions

$$
a_{n-1}(t), \ldots, a_{0}(t), g(t)
$$

are continuous at x_{0}.

Initial Value Problems

Definition

An n-th order linear initial value problem (IVP) is an n-th order linear ODE

$$
y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=g(t)
$$

together with a family of initial conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

such that $x_{0}, y_{0}, y_{1}, \ldots, y_{n-1}$ are fixed constants and the functions

$$
a_{n-1}(t), \ldots, a_{0}(t), g(t)
$$

are continuous at x_{0}.

Theorem

An n-th order linear IVP has a unique solution $y_{\text {sol }}(t)$ on any interval $I \subseteq \mathbb{R}$ on which the function $a_{n-1}(t), \ldots, a_{0}(t)$, and $g(t)$ are all continuous.

The exponential function

Example

Verify the statement of the previous theorem for the IVP

$$
y^{\prime}(t)-y(t)=0
$$

with the initial condition $y(0)=1$.

The exponential function

Example

Verify the statement of the previous theorem for the IVP

$$
y^{\prime}(t)-y(t)=0
$$

with the initial condition $y(0)=1$.
Existence: Recall the familiar exponential function

$$
y: \mathbb{R} \rightarrow \mathbb{R}_{>0}, \quad y(x)=e^{x} .
$$

One way to define e^{x} is by the Taylor series $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$.

- The series converges absolutely for all $x \in \mathbb{R}$ (ratio test).
- To justify the formal calculation

$$
\frac{d}{d x}\left(e^{x}\right)=\frac{d}{d x}\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)=\sum_{n=0}^{\infty} \frac{d}{d x}\left(\frac{x^{n}}{n!}\right)=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!}=e^{x}
$$

requires material from MATH 140B.

